A Study on the Electro-Optical Properties of Thiol-Ene Polymer Dispersed Cholesteric Liquid Crystal (PDChLC) Films.

نویسندگان

  • Yujian Sun
  • Yanzi Gao
  • Le Zhou
  • Jianhua Huang
  • Hua Fang
  • Haipeng Ma
  • Yi Zhang
  • Jie Yang
  • Ping Song
  • Cuihong Zhang
  • Lanying Zhang
  • Fasheng Li
  • Yuzhen Zhao
  • Kexuan Li
چکیده

In this study, a polymer dispersed cholesteric liquid crystal (PDChLC) film obtained via a one-step fabrication technique based on photopolymerization of a thiol-acrylate reaction system was prepared and characterized for the first time. The effects of the chiral dopant, the influence of thiol monomer functionality and content on the morphology and subsequent performance of the PDChLC films were systematically investigated. It was demonstrated that the addition of a small amount of chiral dopant slightly increased the driving voltage, but decreased the off-state transmittance significantly. Furthermore, scanning electron micrographs (SEM) shown that the liquid crystal (LC) droplet size decreased at first and then increased with the increasing amount of thiol monomer functionality, while increasing the thiol content increased the LC droplet size. Correspondingly, the electro-optical switching behavior was directly dependent on LC droplet size. By tuning the raw material composition, PDChLC film with optimized electro-optical performance was prepared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S8...

متن کامل

Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films

The polymer stabilized liquid crystal (PSLC) film is a relatively novel electro-optical material, which is generally obtained by dissolving a small amount of a bifunctional photoreactive monomer in a low molecular mass liquid crystal. In this paper, the PSLC films were prepared with photoreactive biphenyl methacrylate monomers by photopolymerization induced phase separation. The effects of liqu...

متن کامل

UV-cured cholesteric polymer-dispersed liquid crystal display

We describe the preparation and electro-optic characteristics of a color display which makes use of the selective reflection of cholesteric droplets embedded in a polymer film. The polymer film is formed by a UV-curable adhesive, as opposed to the thermoplastic polymers which have been used previously. The new systems are easy to prepare and suitable for operation at room temperature. They show...

متن کامل

Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...

متن کامل

Dynamics of polymer-dispersed cholesteric liquid crystals

We have studied the electrooptic properties of droplets of cholesteric liquid crystal dispersed in a polymer. Application of AC electric fields to the droplets leads to a conversion of the droplet from a nonreflecting to a selectively reflecting appearance. When the field is suddenly

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2017